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Abstract 

This paper suggests a possible means for 
evaluating the performance of neural networks 
from a global perspective in parameter-space. 
Traditional evaluations tend to focus on 
performance in weight-space or on overall 
output error during one training session. 
However, a global perspective of perfor~ance 
in parameter-space may be of pr~mary 
importance during the initial stages of 
problem solution. During these stages, the 
researcher is typically trying to determine a 
network configuration and suitable values for 
its training equation parameters. Instead of 
a hit-or-miss approach, this paper describes 
an organized experimental method that 
identifies network configuration and 
parameter value choices which are not 
sensitive to minor variations for a standard 
training metric. The technique is 
illustrated for the network used by Hopfield 
and Tank to solve a traveling salesman 
problem and with traditional Backpropagation 
as described by Lippmann. 

Introduction 

The application of neural networks to new and 
complex problems would be greatly aided by a 
global view, in parameter-space, of neural 
network performance. It is the author's 
experience that researchers tend to offer 
combinations of training equation parameter 
values and network configurations without 
explanation or apparent systematic choice. 
For instance, in traditional backpropagation, 
the values chosen for the Gain and Momentum 
parameters are typically not explained. When 
a new problem is tried, the original values 
may or may not permit the network to learn 
the new mappings even if they are of the same 
class as the original. The researcher then 
has to try many variations of parameter 
values and network configurations or do 
detailed studies in error or weight-space in 
order to get the network to learn the new 
mappings. It would be better if there were 
some systematic method to show ranges of 
parameter values and network configurations 
that would work well for a given class of 
mappings. This desire has led to this paper 
and a longer term research effort aimed at 
neural network performance evaluation. 

Before proceeding, it is necessary to define 
two terms as used in this paper. 

Performance: The number of training 
cycles the network needs to carry out its 
intended task. For inputfoutput vector 
mapping networks: the number of random 
exposures to the training vector pairs the 
network needs in order to learn the 
input/output mappings represented by the 
vectors. For energy minimization networks 
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used to solve optimization problems (such as 
Hopfield and Tank's): the number of node 
updates needed before the network settles 
into its minimum energy state within a given 
tolerance. 

Global/Local Perspective: Instead of 
looking at performance during one training 
session (local perspective), the global 
perspective looks at performance over many 
training sessions. 

Convergence Maps 

Convergence maps are N-dimensional plots 
which show the ability of a neural network to 
converge on (learn) a given training metric. 
The traveling salesman optimization problem 
is a classic · metric for testing energy 
minimization networks. This is the metric 
discussed in this paper. 

Two dimensional convergence maps have been 
used in the past to illustrate the 
performance of neural networks. Among the 
recent papers are Cherkassky and Vassilas, 
Perugini and Engeler, and Levine. Once such 
global measures are taken in parameter space, 
plots of the error surface or of weight space 
can be developed during a specific training 
run. These latter plots are useful for 
observing the behavior of a network at the 
local level. Based on global observations, 
specific changes may be indicated in the 
values of training equation parameters or in 
network configuration. Modifications to the 
training method and/or training equation can 
be made based on local observations. Either 
global and/or local performance measures can 
be taken again to judge the results of the 
changes. In this way, an organized 
experimental approach to the selection of 
training equation parameter values, network 
architecture, or the training method/equation 
for the problem class represented by the 
training metric could develop. 

Maps of Hopfield and Tank's Traveling 
Salesman Neural Network 

Hopfield and Tank's neural network for 
solving the traveling salesman problem 
presents an opportunity for trying out the 
ideas behind convergence maps. The thought 
here is to take a global look at the 
network's performance relative to its goal of 
arriving at valid tours. In their summary, 
Wilson and Pawley state, "Our simulations 
indicate that Hopfield and Tank were very 
fortunate in the limited number of TSP 
simulations they attempted ••••• their basic 
method is unreliable •.•• " If we could take 
a global look at the performance of Hopfield 
and Tank's network, we could see for 
ourselves whether or not the training of the 
network is reliable. (In this sense 
"reliable" means "convergence on valid tours 
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is not sensitive to variations in para.eter 
values".) The following paragraphs show 
convergence aaps which give us a start at 
getting this global look. 

The training equation of the Hopfield and 
Tank network as used in this paper is shown 
below. The fora presented here is due to 
Little's analysis of Hopfield and Tank's 
original matheaatics. To initialize the 
network, the Uxi' s are set to saall randoa 
values. These are the values present in the 
network when t =DeltaT. Tble is allowed to 
advance in steps of DeltaT until there are no 
further changes in the Uxi's (within a given 
tolerance). At this point, ainbiWI energy 
has been achieved and a valid route should 
have resulted. As you will see, a valid tour 
does not always result. The frequency with 
which this happens led to Wilson and Pawley's 
remark. 

U,,. (tr-Ll :t-l= Ui(t )- D.c [Ai. .V,.;-rBi Vy;. 
f# y:llx 

t-C ftJ ~i -N]+])} J)(t[\tj/.,-r~~-J 

-r [U}(.:Ct )/r]] 

The paraaeters in 
described above were 
the cases where they 
given plot: 

A 500 
8 500 
c 200 
D 500 

the training equation 
set as follows except in 
were var led to produce a 

dxy Distance between cities x and y 
DeltaT 0.0001 (change in tiae t) 
N 15 
t tiae 
Tau So big that (Uxi(t) I Tau) 

could be assumed = 0 
uo 0.02 
Uinit -0.5 * UO * Ln(#CITIES - 1) 
Vxi 0.5 * (1.0 + TANH[Uxi(t)/UO]) 
x,y City nuaber 
i,j Tour position 
Region of randoa selection for Uxi 
initialization = U(-0.1Uinit,+0.1Uinit) 
Training cutoff At valid tour, liait of 

12000 node updates 

It is possible to plot the number of node 
updates the network needed to converge on a 
valid tour. The plot could be based on 2500 
training sessions where 50 value variations 
of one equation parameter are made for each 
of 50 variations of another paraaeter. The 
axes for such a plot are shown in Figure 1. 
Figures 2, 3, and 4 show plots for variations 
of the D " N, A & 8, and Tau & Del taT 
paraaeters respectively . By observing these 
plots it is possible t o take an organized 
look at the Hopfield and Tank network fro• a 
global perspective. A siailar aethod could 
be used to study the performance of other 
network types (see the author's other two 
papers on this subject). Some details on 
Figures 2, 3, and 4 are given below. 
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X AXIS: Variable 0 

Figure 1: Example 3-Dimenslonal Convergence Map Axes 

Figure 2. Choosing the above values for the 
network's training equation parameters and 
Hopfield and Tank's city locations as 
determined by Wilson and Pawley, the 
convergence map given in Figure 2 results if 
D = 0 - 600 and N = 0 - 30. As i s readily 
evident, the aap is generally a high table 
with a narrowing trench and one fairly wide 
pit where valid tours are reliably achieved 
within 12000 iterations of the equation for 
Uxi(t). This range of D and N was chosen 
because Hopfield and Tank suggest the above 
set of values and then say that some 
variation about those values may be 
necessary. The surface shows that between 
N=10.41 and N=19.59 over the entire range of 
D, there is plenty of opportunity for 
converging on a valid tour. 

Figure 3. Fixing D at 12.24 and N at 11.63, 
the map in Figure 3 results under variations 
of A = o - 600 and 8 = o - 600. Observe the 
~~any opportunities for reliable convergence 
available when the values of A and 8 range 
over 220.41 - 600.0. 

.. 



Figure 4. Setting A= 367.35, B = 428.47, D 
= 12.24, and N - 11.63; variations of DeltaT 
and Tau (0.0 - 0.7 and 0.25 - 2.0) produce 
the .ap in Figure 4. Notice that the surface 
is essentially low and flat except where 
Del taT = o. o and for very low values of 
DeltaT coupled with very high values of Tau. 

Conclusions on Hopfield & Tank's TSP Network 

From the evidence provided by the above 
convergence maps, Hopfield and Tank's TSP 
network reliably finds valid tours but only 
in a vary narrow parametric reg ion. It 
appears that the critical parameters for 
finding this region are D and N. As a matter 
of interest, this author's experience is that 
the list of random numbers chosen for use by 
the Hopfield and Tank TSP network has a 
critical impact on the network's performance. 

Backpropagation and the 2D XOR Problem 

For this set of experiments we developed 
Lippmann's traditional backpropag~tio~ neural 
network model with a modif~cat~on by 
Klimasauskas. This development was also 
assisted by Gustafson's notes. The 
modification by Klimasauskas involved an 
exception to Lippmann's. and .Gus;afson's 
specification in that th~s proJect s model 
uses a positive bias term instead of a 
negative bias term. 

BACKPROPAGATIQN NEURAL NETWORKS 

Fig 5a: Three Layer Network Fig 5b: Four Layer Network 

Output Layer 

Second Hidden Layer 

First Hidden Layer 

Input Layer 
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Three and four layer models were generated 
and tested. Their architectures ares shown 
in Figure 5. Using these models, runs were 
made to generate 3-dimensional convergence 
maps based on the 2-dimensional XOR problem. 
This involved training the network to map the 
XOR inputs to the desired outputs. 
Variations were made of parameter values 
(Gain, momentum, and distribution) and 
network configuration (interlayer connections 
and number of nodes in the hidden layers). 
Convergence maps were drawn to show the 
ability of the network to learn the XOR 
input/output mappings. Generally, there are 
some rather dramatic variations in the 
network's ability to converge on (learn) the 
desired mapping, depending on how one picks 
parameter values and network configurations. 
However, the results show clearly how, for 
this class of mapping, to pick values and 
configurations that are not sensitive to 
minor variation in parameter values or 
network configuration. This will benefit the 
project when we try more complex, but 
related, mappings. 

In these experiments, Gain was incremented 
from 0 to 4 in 50 trials and either 
Distribution, Number of Hidden Nodes, or 
Momentum was incremented for each increment 
of Gain. The result of each trial then 
became a point on the 3-dimensional surface. 
Other facts about the runs are: 
Initialization: U(-.1,.1) except in cases 
where Distribution was one of the varied 
parameters; Training: random examples from 
the two-dimensional XOR table; Computer: DEC 
MicroVax III under Ul tr ix using Berkeley 
Pascal; Weight Updates: Asynchronous within 
layers, Synchronous between layers; Momentum: 
0 except in cases where Momentum was varied; 
Number of Nodes in Hidden Layers: 1 except in 
cases where Number of Nodes was varied; 
Acceptable Error: 0. 1 for each input/ output 
pair. The random seed was the same for all 
runs and the generator was reseeded with the 
same seed after the initial weights were 
selected. Training was cut off after 100,000 
exposures if convergence did not take place 
by then. 

Four-layer backpropagation: 
backpropagation connection 
shown in Figure 5b. 

The four-layer 
architecture is 

The connection architectures used in this 
experiment were 1) fully connected, input 
connected to both the output and the hidden 
layers and 2) input not connected to output. 
(Line 2 disconnected.) The experiment 
results given below compare the two 
architectures' ability to develop the 2-
dimensional XOR mappings given variations of 
Gain, Momentum, Initialization Distribution 
size, and Number of Hidden Nodes. 

Variations of Momentum: Momentum was varied 
from 0 to 1 inclusive in 50 steps for each of 
50 steps of Gain. Architecture 1): As 
Momentum increases, it has less and less a 
desirable affect. As Gain increases, 
Momentum lends less and less assistance to 
convergence. The fastest convergence 
occurred at Gain = 3.61 and Momentum = 0.57. 
However, that is deep in a pit so it is 
better to choose something like Gain = 1. 5 
and Momentum = 0.02, values that are in the 



middle of the low flat plain. The plot for 
this experiment is shown in Figure 6. 
Architecture 2): This experiment showed very 
little.oppo:tunity for reliable convergence, 
only w1th h1gh values of Gain and low values 
of Momentum. It would be interesting to 
extend this plot to Gain = 10, something we 
may do in the next phase. Convergence was 
fastest for Gain = 3.51 and Momentum = 0.45. 
Very near the back-right wall. Figure 7 
shows the plot. 

Fig 6. Fully Connected Network Using 
Gain and Momentum 

Fig 7. Input not Connected to Output Using 
Gain and Momentum 

Variations of weight initialization 
distribution: To initialize the network 
weights, values were chosen randomly from a 
uniform distribution whose size varied in 50 
steps for each of 50 increments of Gain. The 
variation was U(-.1,+.1) to U(-2, +2) 
inclusive. Architecture 1): Distribution 
variations had very little affect on this 
architecture's ability to converge. Notice 
some contrary regions, however. Convergence 
is difficult for very low values of Gain and 
very high values of Distribution. Very high 
values of Gain for most values of 
Distribution also negatively impact 
convergence except in the rare case where 
there is a combination of very high Gain and 
very large Distribution. Convergence was 
fastest for Gain = 3.92 and Distribution = 2, 
in the flat plain which appears in the back
right of the plot. See Figure 8 for this 
plot. Architecture 2) For this 
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architecture, convergence almost never 
occurred except for small Distributions. As 
Gain increased, Distribution generally helped 
but the affect was minimal. The fastest 
convergence occurred at Gain 0. 82 and 
Distribution = 2, a deep pit. Figure 9 
illustrates these results. 

Fig 8. Fully Connected Network Using 
Gain and Initialization Distribution 

Fig 9. Input not Connected to Output Using 
Gain and Initialization Distribution 

Variations of number of hidden nodes: The 
number of hidden nodes in both layers was 
varied from 1 - 10 in 10 steps for each of 50 
increments of Gain so that each hidden layer 
always had the same number of nodes. Only 10 
nodes were run since the amount of computer 
t~me needed wo~ld have been too great to go 
h1gher. Arch1tecture 1): Variations of 
number of hidden nodes led to tremendous 
unreliability in convergence. The fastest 
time was recorded at Gain = 2. 09 and Number 
of Nodes = 8, in the middle of an unreliable 
regi?n. See Figure 10 for this plot. 
Arch1te<;=tur~ 2) This was a most surprising 
result 1n l1ght of the other plots from this 
architecture. In t his case, the second 
architecture resulted in better performance. 
The plot is genera l ly like a slide that 
angles downward, left to right. Only at very 
low values of Gain is this not so and even 
then at Nodes = 1. Convergence was fastest 
at Gain= 3.76 and Nodes= 10. Figure 11 has 
this plot. 
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Fig 10. Fully Connected Network Using 
Gain and Number of Hidden Nodes 

Input not Connected to Output Using 
Gain and Number of Hidden Nodes 

Three-layer backpropagation: 
backpropagation connection 
shown in Figure 5a. 

The three-layer 
architecture is 

Three experiments with the three-layer 
backpropagation model were tried: 

1) data lines marked "X" connected, Gain 
varied from 0 - 4 in 50 steps, and Random 
Distribution for Initialization varied from 
U(-.1,.1) to U(-2,2) in 50 steps for each 
step of Gain. 

2) data lines marked "X" connected, Gain 
varied from 0 - 4 in 50 steps, and Number of 
Hidden Layer Nodes varied from 1 - 10 in 10 
steps for each step of Gain. 

3) data lines marked "X" connected, Gain 
varied from 0 - 4 in 50 steps, and Momentum 
varied from 0 - 1 in 50 steps for each step 
of Gain. 

Convergence was not achieved with data lines 
marked "X" disconnected. 

Experiment 1: The point of convergence maps 
is the ability to see where the regions of 
reliable convergence are. This experiment 
achieved its fastest convergence time at Gain 
= 3.10 and Distribution= U(-.41,.41). These 
parameters are near the outer edge of the low 
flat region near the right wall. The 
conclusion is that these values are too near 
the wall for convergence to be insensitve to 
small changes in their value. One would be 
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bette: ad~ise~ to use something like Gain = 2 
and D1str1but1on = (-.5,.5) when trying a new 
problem in this problem class. These values 
put. one !lear the. middle of the low flat 
pl~1n. F19ure 12 1llustrates the results of 
th1s exper1ment. 

Experiment 2: The fastest convergence 
occured at Gain 3.51 and Number of Hidden
Layer Nodes m 10. However, note that after 
Gain = 2.4, variations in Number of Hidden
Layer Nodes causes considerable unreliable 
network behavior. Thus, there would be no 
predicting what would happen if a new problem 
were tried. It would be better to try 
something like Gain "" 1. 6 and Number of 
Hidden-Layer Nodes = 2 in order to get into 
the low flat region. Figure 13 illustrates 
the results of this experiment. 

Experiment 3: Convergence was fastest at 
Gain = 2.53 and Momentum= .63. These values 
are due to the pit which occurs in the middle 
of the high flat region. AGain, One should 
not choose these values when trying some new 
problem. Rather, choose Gain ~ 1 (or so) and 
Momentum not greater that . 5. Figure 14 
illustrates the results of this experiment. 



Conclusions on Backpropagation 

It is obvious from the convergence maps shown 
in this report that the node connection 
architecture has a dramatic affect on the 
network's ability to learn a set of vector 
mappings. Less dramatic, but just as 
important, are the values of the network's 
training equation parameters. Preliminary 
tests have suggested that these parameters 
need to be set not to the values which give 
fastest learning for a given metric but to 
those values which give reliable learning. 
Reliable learning ability is shown on the 
maps as low flat plains. In most of the maps 
shown in this report, the fastest learning 
occurred in a pit found on a high flat plain. 

Continuing Research 

A concern which came about as a result of 
this study has to do with the basic theory of 
backpropagation. The theory says that 
backpropagation neural networks are 
guaranteed to learn an arbitrary set of 
vector mappings. The theory does not say how 
long it will take to learn a given set of 
vector mappings. This is no problem when the 
data domain is fixed. However, in most 
military applications, the data domain is not 
fixed. This leads to questions on what 
happens if the number of vector mappings to 
be learned increases and what happens if the 
number of components in the vectors 
increases. Certainly, one would expect the 
number of exposures required for learning to 
increase. But, what is the rate of increase? 
Is it linear, geometric, or exponential! It 
is not sufficient to say, "Well, just put it 
on your Cray and let it run". In military 
applications, we have to be able to guarantee 
reprogrammability within a given amount of 
time. We will address these issues in the 
next phase of this research as part of our 
work in event-train restoration. 

A second concern is the fact that most of the 
neural models which this author is familiar 
with are written in either C, Pascal, or 
Basic. For neural networks to transition to 
military systems, the models will have to be 
in Ada. At the present time, the most likely 
technology for early implementation of neural 
networks in military hardware involves 
transputers. A modeling capability is 
needed which will generate Ada code and the 
Occam harnass for transputer systems. 
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An effort now underway is the development of 
4-dimensional convergence maps. A 4-
dimensional plot is produced by fixing w and 
then generating a three dimensional plot by 
varying x andy to get z (z = f(x,y)). Then, 
w is changed by some fixed delta after which 
the three dimensional plot is again produced. 
This continues unti l the desired number of 30 
plots is produced. The result is a series of 
30 plots based on variations of w where each 
plot frame uses fixed variations of x and y 
to get z. If enough of these plots are 
produced, they can be "played back" in rapid 
sequence to see how the 30 plot evolves based 
on the variations in w and how, for a fixed 
w, z changes based on x and y. so, for 
instance, it should be possible to obtain 
plots of convergence time on the z axis with 
w, x, and y being momentum, gain, and number 
of hidden layer nodes. 

Acknowledgments 

The author wishes to thank Dr Gordon Little 
for his analysis of the Hopfield and Tank 
network and Dr Steve Gustafson for his 
discussions on Backpropagation. Both 
professors are with the University of Dayton 
Research Institute. They both reviewed this 
paper and offered many helpful comments. 
Their Jan 89 graduate course in neural 
networks saw the beginnings of this research 
project. Thanks are also due to Debbie Ables 
for her administrative support. 

Bibliography 

Cherkas sky, Vladimi r and Nikolaos Vassilas; 
"Performance of Back Propagation Networks for 
Associative Database Retrieval"; Proc: 
International Joint Conference on Neural 
Networks; pi-77; 1989 

Gustafson, Steve; Class 
Backpropagation; University 
Research Institute; Jan 89 

notes on 
of Dayton 

Hopfield, J.J. and D.W. Tank; "Neural 
Computation of Decisions 1n Optimization 
Problems"; Biologi cal Cybernetics, 52, 141-
152, 1985 

Klimasauskas, Casimir c. "Neural Networks: A 
Short Course", PC AI Magazine, Nov/Dec 88 

Levine, R. Y.; "Neural Network Performance on 
the stochastic Exclusive-Or Problem"; 
OTIC/NTIS I AD-A19 7-789; Jul 88 

Lippmann, Richard P. ; 
Computing with Neural 
Magazine, Apr 87 

"An Introduction to 
Nets"; IEEE ASSP 

Little, Gordon; Class notes on Hopfield and 
Tank TSP; University of Dayton Research 
Institute; Apr 89 

Perugini, N.K. and W.E. Engeler; "Neural 
Network Learning Time: Effects of Network and 
Training Set Size"; Proc: International 
Joint Conference on Neural Networks; pii-395; 
1989 

Raeth, Peter G.; "3-D surface Maps for 
Neural Network Performance Evaluation"; Proc: 
ACM Dayton SIGART Aerospace Applications of 
Artificial Intelligence Conference; Oct 89 



Raeth, Peter G.; "Event-Train Restoration 
Via Backpropagation Neural Networks (Jan-Jun 
89) "; National Technical Information Service 
& Defense Technical Information Center, 
Cameron Station, Virginia (USA); Order # 
AD-A216-308; Dec 89 

Wilson, G.V. and G.S. Pawley; "On the 
Stability of the Travelling Salesman Problem 
Algorithm of Hopfield and Tank"; Biological 
Cybernetics, 58, p63, 88 

1157 




